Skip to main content

Technology: The Dizziness of unseen Depth

You just went to the Google home page.

Simple, isn't it?

What just actually happened?

Well, when you know a bit of about how browsers work, it's not quite that simple. You've just put into play HTTP, HTML, CSS, ECMAscript, and more. Those are actually such incredibly complex technologies that they'll make any engineer dizzy if they think about them too much, and such that no single company can deal with that entire complexity.

Let's simplify.

You just connected your computer to www.google.com.

Simple, isn't it?

What just actually happened?

Well, when you know a bit about how networks work, it's not quite that simple. You've just put into play DNS, TCP, UDP, IP, Wifi, Ethernet, DOCSIS, OC, SONET, and more. Those are actually such incredibly complex technologies that they'll make any engineer dizzy if they think about them too much, and such that no single company can deal with that entire complexity.

Let's simplify.

You just typed www.google.com in the location bar of your browser.

Simple, isn't it?

What just actually happened?
Well, when you know a bit about how operating systems work, it's not quite that simple. You've just put into play a kernel, a USB host stack, an input dispatcher, an event handler, a font hinter, a sub-pixel rasterizer, a windowing system, a graphics driver, and more, all of those written in high-level languages that get processed by compilers, linkers, optimizers, interpreters, and more. Those are actually such incredibly complex technologies that they'll make any engineer dizzy if they think about them too much, and such that no single company can deal with that entire complexity.

Let's simplify.
You just pressed a key on your keyboard.

Simple, isn't it?
What just actually happened?
Well, when you know about bit about how input peripherals work, it's not quite that simple. You've just put into play a power regulator, a debouncer, an input multiplexer, a USB device stack, a USB hub stack, all of that implemented in a single chip. That chip is built around thinly sliced wafers of highly purified single-crystal silicon ingot, doped with minute quantities of other atoms that are blasted into the crystal structure, interconnected with multiple layers of aluminum or copper, that are deposited according to patterns of high-energy ultraviolet light that are focused to a precision of a fraction of a micron, connected to the outside world via thin gold wires, all inside a packaging made of a dimensionally and thermally stable resin. The doping patterns and the interconnects implement transistors, which are grouped together to create logic gates. In some parts of the chip, logic gates are combined to create arithmetic and bitwise functions, which are combined to create an ALU. In another part of the chip, logic gates are combined into bistable loops, which are lined up into rows, which are combined with selectors to create a register bank. In another part of the chip, logic gates are combined into bus controllers and instruction decoders and microcode to create an execution scheduler. In another part of the chip, they're combined into address and data multiplexers and timing circuitry to create a memory controller. There's even more. Those are actually such incredibly complex technologies that they'll make any engineer dizzy if they think about them too much, and such that no single company can deal with that entire complexity.

Can we simplify further?
In fact, very scarily, no, we can't. We can barely comprehend the complexity of a single chip in a computer keyboard, and yet there's no simpler level. The next step takes us to the software that is used to design the chip's logic, and that software itself has a level of complexity that requires to go back to the top of the loop.

Today's computers are so complex that they can only be designed and manufactured with slightly less complex computers. In turn the computers used for the design and manufacture are so complex that they themselves can only be designed and manufactured with slightly less complex computers. You'd have to go through many such loops to get back to a level that could possibly be re-built from scratch.

Once you start to understand how our modern devices work and how they're created, it's impossible to not be dizzy about the depth of everything that's involved, and to not be in awe about the fact that they work at all, when Murphy's law says that they simply shouldn't possibly work.

For non-technologists, this is all a black box. That is a great success of technology: all those layers of complexity are entirely hidden and people can use them without even knowing that they exist at all. That is the reason why many people can find computers so frustrating to use: there are so many things that can possibly go wrong that some of them inevitably will, but the complexity goes so deep that it's impossible for most users to be able to do anything about any error.

That is also why it's so hard for technologists and non-technologists to communicate together: technologists know too much about too many layers and non-technologists know too little about too few layers to be able to establish effective direct communication. The gap is so large that it's not even possible any more to have a single person be an intermediate between those two groups, and that's why e.g. we end up with those convoluted technical support call centers and their multiple tiers. Without such deep support structures, you end up with the frustrating situation that we see when end users have access to a bug database that is directly used by engineers: neither the end users nor the engineers get the information that they need to accomplish their goals.

And trust me.

I feel this everyday.....everyday I sit at my desk thinking about what went wrong in this large organizational labarynth. I feel this

That is why the mainstream press and the general population has talked so much about Steve Jobs' death and comparatively so little about Dennis Ritchie's: Steve's influence was at a layer that most people could see, while Dennis' was much deeper. On the one hand, I can imagine where the computing world would be without the work that Jobs did and the people he inspired: probably a bit less shiny, a bit more beige, a bit more square. Deep inside, though, our devices would still work the same way and do the same things. On the other hand, I literally can't imagine where the computing world would be without the work that Ritchie did and the people he inspired. By the mid 80s, Ritchie's influence had taken over, and even back then very little remained of the pre-Ritchie world.

And while talking about Richie......the way we are changing, It's hard for me to even fathom after 10 years what will be even the meaning of this rant.

Comments

Popular posts from this blog

Visualizing large scale Uber Movement Data

Last month one of my acquaintances in LinkedIn pointed me to a very interesting dataset. Uber's Movement Dataset. It was fascinating to explore their awesome GUI and to play with the data. However, their UI for exploring the dataset leaves much more to be desired, especially the fact that we always have to specify source and destination to get relevant data and can't play with the whole dataset. Another limitation also was, the dataset doesn't include any time component. Which immediately threw out a lot of things I wanted to explore. When I started looking out if there is another publicly available dataset, I found one at Kaggle. And then quite a few more at Kaggle. But none of them seemed official, and then I found one released by NYC - TLC which looked pretty official and I was hooked.
To explore the data I wanted to try out OmniSci. I recently saw a video of a talk at jupytercon by Randy Zwitch where he goes through a demo of exploring an NYC Cab dataset using OmniSci. A…

ARCore and Arkit: What is under the hood : Anchors and World Mapping (Part 1)

Reading Time: 7 MIn
Some of you know I have been recently experimenting a bit more with WebXR than a WebVR and when we talk about mobile Mixed Reality, ARkit and ARCore is something which plays a pivotal role to map and understand the environment inside our applications.
I am planning to write a series of blog posts on how you can start developing WebXR applications now and play with them starting with the basics and then going on to using different features of it. But before that, I planned to pen down this series of how actually the "world mapping" works in arcore and arkit. So that we have a better understanding of the Mixed Reality capabilities of the devices we will be working with.
Mapping: feature detection and anchors Creating apps that work seamlessly with arcore/kit requires a little bit of knowledge about the algorithms that work in the back and that involves knowing about Anchors. What are anchors: Anchors are your virtual markers in the real world. As a develope…

ARCore and Arkit, What is under the hood: SLAM (Part 2)

In our last blog post (part 1), we took a look at how algorithms detect keypoints in camera images. These form the basis of our world tracking and environment recognition. But for Mixed Reality, that alone is not enough. We have to be able to calculate the 3d position in the real world. It is often calculated by the spatial distance between itself and multiple keypoints. This is often called Simultaneous Localization and Mapping (SLAM). And this is what is responsible for all the world tracking we see in ARCore/ARKit.
What we will cover today:How ARCore and ARKit does it's SLAM/Visual Inertia OdometryCan we D.I.Y our own SLAM with reasonable accuracy to understand the process better Sensing the world: as a computerWhen we start any augmented reality application in mobile or elsewhere, the first thing it tries to do is to detect a plane. When you first start any MR app in ARKit, ARCore, the system doesn't know anything about the surroundings. It starts processing data from cam…